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Abstract

The ambiguity function associated with the linear canonical transform
(LCT) is a generalization of the one-dimensional ambiguity function
using the linear canonical transform, called the linear canonical
ambiguity function (LCAF). We first investigate its basic properties
such as the complex conjugation, translation and modulation. These
properties are extensions of the corresponding versions of the classical
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ambiguity function. Using the basic relationship between the LCT and
LCAF, we derive the inversion and Moyal formulas for the LCAF.
Based on a convolution theorem for the LCT, we propose the
convolution theorem related to LCAF. Finally, through simulation
example, we demonstrate how the proposed convolution generalizes
the formulation of the classical ambiguity function convolution.

1. Introduction

The linear canonical transform (LCT) [4, 6, 7] is a linear integral
transform with three free parameters which has found many applications in
several areas, including signal processing and optics. It can be regarded as
generalization of many transforms such as the Fourier transform, Laplace
transform, the fractional Fourier transform, the Fresnel transform and the
other transforms. Many properties of this transform are already known,
including shift, modulation, and uncertainty principle [9, 11, 14, 16-18].

Recently, many efforts have been devoted to extend various types of
transform to the linear canonical transform. Tao et al. [13] studied the short-
time fractional Fourier transform which are generalization of the short-time
Fourier transform to the LCT. Some applications of the extended transform
such as the estimations of the time-of-arrival (TOA), pulse width (PW) of
chirp signals, and the STFRFD filtering are also discussed. Fan et al. [3]
proposed an extension of the quaternion Wigner-Ville distribution to the
LCT. Some useful properties of the generalized transform were also studied.
In [6], the authors proposed the Wigner-Ville distribution associated LCT
and established its convolution and correlation theorems. In [19], the authors
proposed the generalization of the classical wavelet transform to the LCT
domain and its application to blind image watermarking. The authors [20]
discussed the convolution and correlation theorems for the 2-D LCT, which
are the generalization of the convolution and correlation theorem for 2-D
Fourier transform. In [15], the generalization of the classical ambiguity
function to the LCT was recently presented. Some general properties of the
generalized transform were shortly studied.
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Therefore, the purpose of this present paper is to introduce the linear
canonical ambiguity function (LCAF). The transform is obtained by
replacing the Fourier kernel with the LCT kernel in the AF definition. We
investigate several basic properties of the LCAF such as complex
conjugation, shift and modulation. These properties are very important for
their applications in digital signal and image processing. Using the
relationship between the LCT and LCAF we derive the inversion and Moyal
formulas related to the LCAF. Based on convolution theorem for the LCT we
define the convolution of the LCAF and find its convolution theorem.
Finally, we present an application of the LCAF convolution theorem to
demonstrate how the proposed convolution generalizes the formulation of the
ambiguity function convolution theorem.

2. Preliminaries

2.1. Linear canonical transform

The LCT is firstly proposed by Moshinsky and Quesnee [4] and Collins
[8]. Here we briefly introduce the LCT definition.

a b
Definition 2.1 (LCT). Let A=(a, b, ¢, d)= { d} e R%? pe a matrix
c

parameter such that det(A) = ad —bc =1. The LCT of a signal f e LZ(R)
is defined by

jw f(X)K a(o, X)d%, b =0,
- 1)

(D@ =1
\/Ee'(ﬂm f(dw), b=0,

where K 5(w, x) is so-called kernel function of the LCT given by

lfa 2 2 d 2
1 I—(—X ——XO+—® )
KA((D, X) = ﬁe .

27hi @)

It also should be remembered, when b = 0, the LCT of a signal is essentially
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a chirp multiplication. Therefore, in this work, we always assume b = 0. The
inverse transform of the LCT is given by

£(x) = jj‘; La() (@)K 1(0, x)do

1 (—d 2 a
i =3 L YO (G R s L PR

where the inverse of matrix parameter A is denoted by Al and Al =
(d, —b, —c, a).

An important property of the LCT is the Parseval’s formula which will
be used to establish Moyal’s formula for the linear canonical ambiguity
function (LCAF)

(f. g) = (La(f) La(9)), (4)

forall f, ge LZ(R). In particular, for f = g we obtain the Plancherel’s
formula for the LCT as

11, =1La(f)]y,

where LP norm is defined by
o Yp
11, =U_w| f(x)|pdxj . lsp<o,
2.2. Ambiguity function

In this subsection, we briefly discuss the important properties of the
ambiguity function. For more details, we refer the reader to [1, 2, 10, 11].

Definition 2.2 (Ambiguity function). If two functions f, g e LZ(R),
the cross ambiguity function of f and g is defined by

At ¢t @) = J.io f(x + %) g(x - %)e‘i‘”xdx. (5)
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Some basic properties of the classical AF are summarized as follows. Let
f,ge LZ(R). Denote by t, is the shift operator defined by 7, f(x) =
f(x—k) and by M, is a modulation operator defined M, f(x)=

e!0% £ (x).
1. Complex conjugation
m =Wg,f(_t’ - ).
2. Translation
At gt @) = e 0KAL (1, w).
3. Modulation
—imgk

AMmoerwog(t' o))=e Af,g(tv (D—(Do).

4. Moyal’s formula
1 a0 0
ﬁj‘—oo -[—oo Afl’ gl(t’ (D) AfZl 92 (t’ (D)dtdm = (fl’ f2)(gl’ gZ)

5. Inversion formula

1 © t iot
=t [" A (_, @je'w do,
® 2ng(0)J—w L2
provided g(0) = 0.
3. Linear Canonical Ambiguity Function (LCAF)

3.1. Definition of LCAF

Based on the definition of the classical ambiguity function associated
with the Fourier transform, we obtain a definition of the linear canonical
ambiguity function (LCAF) by replacing the kernel of the FT with the kernel
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of the LCT in the classical AF definition. This definition is similar to the
one proposed in [15]. Therefore, in this paper, we shall investigate more
properties of the LCAF.

Definition 3.1. If f, g e L?(R), then the cross linear canonical

ambiguity function (LCAF) of two functions f and g is defined as

A © t t 1 i%(%xz—%xwr%mz)
A]:fyg(t’(”)z_[_wf(“‘Ejg(X_E)%e dx. (6)

Suppose the kernel of the LCT with parameter A is K (o, x) defined in (2).
Then (5) takes the form

AFR gt o) = [ hy g(x DKo, X)X @)
where
ht g(x 1) = f(x+%)g(x—%). (8)

If f =g, then A]:'ﬁf(t, ®) = AFf\(t, ©) is called the auto linear

canonical ambiguity function. Often both the cross LCAF and the auto LCAF
are usually referred to simply as the LCAF.

It follows from Definition 3.1 that the cross LCAF is the LCT of the
function h¢ 4 (x, t) with respect to x. In other words,

AFR gt ©) = Lathy, g (x, D} (o).
The following result describes an inequality related to the LCAF.

Theorem 3.2. Suppose that f e LP(R), g € LY(R) with 1/p +1/q = 1.

Then we have

1
AR gt )| == Tl gl ©
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Proof. A straightforward computation shows that

| AFE (L, o) |
- 1l(fa 2 2 d 2
o) t t 1 IE(EX _EX(D+F(0)
= flx+= gl x=—= e dx
I, ( ng( zj%

IN
|

s 8

—
N\

>

+
N| —~
N
o

o

>
N—

1/q
1(a. 2 2 2 q
0 t 1 IE(BX _BXQH_B(D )
X——= e dx
* I_w g( 2)«/2nbi
Yo/, |——<a /O
1 °° )P °° t
_—an U_w‘ f(x+§j‘ dx [J._OO g(x—Ej dx}

= ﬁ“i' f(y)lpdy)l/p(:_wwl a(y) quyjl/q-

Hence, the result follows.

Observe first that for p = q = 2, equation (9) will reduce to

A 1
| AFE 4 (, Cl))|SW” flol gl

which shows that A]-'P‘ g(t, ®) is bounded on L2(R).
Example 1. Find the LCAF of a Gaussian signal
2752
£(t) = (no?) ¥4 t/2",

Applying the definition of the LCAF (5) gives
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1
~ 27bi

2 2
o {h) /zcz {(3) /zcz (222l
X I e e e dx

—00

AFAL, ©) = (n6?) Y2

212 1 t2/462 [ _x2 /52 i%(%xz—%xoﬁ—%mz)
S L P
ol

—00

Applying the LCT of the Gaussian function, which can be found in [5], we
finally arrive at

? [2062+idJ
2 2 2 in 2
A]:]A(t, ®) = (nGZ)—l/Z 1 et /4c J2c e b-2iac

V2nbi V262a + bi |

3.2. Useful properties of LCAF

In this subsection, we discus some useful properties of the LCAF and
theirs proofs. We see that the most of them are extensions of the
corresponding version of the classical ambiguity function (AF) with the some
modifications.

Theorem 3.3 (Complex conjugation). For any function f, g e LZ(R),

we have

AFf 4t o) = Ang,_fl (-1, ®). (10)

Proof. Applying the definition of the LCAF (6) and inverse of the matrix
parameter A = (a, b, ¢, d), we easily obtain

A . © t t 1 |%(%X2—%Xm+%w2)
Affyg(t,m):j_wf(x+§)g(x——j e dx
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- Iio g(x —%) f(x +%)KA_1((0, x) dx

-1
= .Aféb: i(—t, o).
Theorem 3.4 (Translation). Suppose that f, g e Lz(]R{). Then we have

_ack?

AFR L (o) =e%e 2 AFP (L, - ka). (1)

 f, k0
Proof. It follows from the definition of the LCAF (6) that
— .1lfa 2 2 d 2
1= =X ——=XO+—-0
(t, ®) = Iw f(x— k +%)g(x— k —%)e Z(b b™b )dx.

A
“Aj:‘tk f, kg

Letting x—k =y and then applying shift property of the LCT, we
immediately obtain

A
AF‘Ck f, 19

(t, )

1/ a 2 d
S O s s

—00

" _iack2 A
=e'%®e 2 AFF (1 0 -ka),

which was to be proved.

Theorem 3.5 (Modulation). For any function f, g € Lz(R), we have

Afl@lwo f, My, 9 (t, ©) = ei(DOtA}_?, g(t’ ). (12)

Proof. Simple calculations show that

A
A}"Mmo Mgy (t, ®)

= JAOO eiwo(x%j f (x + 1) e_imo(x_%j g(x - %) Ka(o, x)dx

—00
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1 iont [ t t i%(%xz —%xm+%m2)
= — ¢! f(x+—)g(x——)e dx
27bi —0 2 2

eiwot.AffA" g(t, ®).
Theorem 3.6 (Modulation and translation). Let f, g e LZ(R) be two
complex functions. Then we get

AFA

imgt A
Mmorkf,Mmotkg(t’ ) = eCAFF 4 (t, o - ka), (13)

10)t i1 —|(ack2+bdw0)/2+|(ck+dm0)m ibckog
A 2 0 2 o0
Aj:Mo)Okakag(t 0)=¢
x AFf 4(t, © — ak — wgb), (14)
I e—i(ack2+bdo)(2J)/2+i(ck+dm0)m—ibckm0
A 2 0 2 0
AF. ’Ckf M, Tkg(t 0))_ €
x AFf o (t, o - ak + wgb). (15)

Proof. For (13), an easy computation yields

A
tl
A]: cool'kf Mmotkg( (D)

_ J.oo ein(H%) ¢ (x N % ~ kje_in(x_%jg(X _ % - kj K a(e, X)dx

1 iont [ © t —t é(zxz—%mx-r% 2)
= — ¢! f(x+——k)g(x———kje dx
2nbi —0 2

o _iﬂ
= gl@otgickog 2 Afﬁ, g(t, © —ka),

where the last line of above expression follows from translation property of
the LCT. For (14), we have, by definition
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AFf (t, o)

wo Tk fr 7k

_ J.oo eiwo(x“%)f(x —k + %) g(x —k —%)KA((D, x)dx

—0

1 O ionx ilwot t —t i%(%xz—%mm%mzj
:ﬂj e ¥0% 2 f(x—k+§)g(x—k——je dx
70l ¢ —0

a 2 d
ay2 —B(m—mob) X+Fm2)

1 _
1 izogt o t t z(b
__ 1 2 f(x_k+_j (x_k__je
e I 2)9 2

1
_ elgwote—i(ackhbdmg)/2+i(ck+dmo)m—ibckmoAj__]{x o (t, & — ak — boy).

dx

For (15), an application of modulation and translation properties of the LCT
we easily obtain

AFA (t, o)

i f, Mgy k9

21
= . 2 2 . .
_ e'zwote—|(ack +bdw0)/2+I(Ck+dw0)co—lekw0Af]A

g(t, ® — ak + bay ).

Theorem 3.7 (Reconstruction formula). For any function f, g e LZ(R),

we have

1 ¢ t
f(t) = m » A}"fA]g(§, m)KA_l(t, o)do. (16)

Proof. It directly follows from (7) that

AFf gt @) = Lalhy, g (6 @) = [ e g(x DKo, x)x.
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Applying the inverse of the LCT (3), we get
h — 7 aFp
(g t) = j_w AFR 4t @)K, 1 (x, @)do,
and thus

f(x . %j g(x - %j = [ a7t 0)K, (% 0)do

Taking the specific value, x = = and the above yields

t
2
- [7 A t
F090) = [ A7 gt 0K, 1[5, 0 Jdo.
or equivalently,

f(t) = ﬁji}A}"ég(t, m)KA_l(%, m)dw.

Theorem 3.8 (Moyal’s formula). For complex functions

f1, T2, 01, 07 € LZ(R), then the following result holds:
©[* A A 4 _ —
[ arh o) AF) @ o)dodt = 21y, )01 02). (17)
In particular, we have
[ 1aFt 4t o) Pdodt = 2| T[] g ], (18)
and
©or>® A A _ 2
j j AFA(L, ©) AFL L, o)dodt = 2)(f, g) 2. (19)

Proof. Applying Parseval’s formula of the LCT (4) to o -integral into
the left-hand side of (17) yields
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T arA A .
J.—oo -[—oo Afflr 01 (t, (D)Aj:fz, o] (t' (D)d(,l)dt

B f _2 U i Lath, g (% D} (@)Lafhty, g, (% )} (m)dmjdt

=717 i O g Dt

Therefore, we further get

T arA A o
I—oo j—oo Affll gl(tv w)A&rlegz (t, (D)d(Ddt

217 1 xe Dafx-Daofx= L)t x+ L)
= I_w j_w fl(X + Ej gl(x —E)gz(x —Ej fz(x + E)dtdx_

Making the change of variables y = x +% and z =X —% and applying

Fubini’s theorem, we obtain

J. oo./4.7'-"](1’91('[, “))A}—fZ,gZ (t, ®)dodt

—00 ¢ —

2] |7 1) 0@ (@) f(y)dyz

-2[" 1 ROY[ 6@ ()

= 2(f1, f2)(91, 92)-

The convolution is a fundamental signal processing algorithm in the theory
of linear time-invariant (LTI) systems. In engineering, it has been widely
used for various template matching. In the following, we first define the
convolution for the LCT (see, for example, [16, 17]. It is the extension of the
convolution definitions from the FT domain to the LCT domain. We present
the convolution definition associated with LCAF and then establish
convolution theorem related to the LCAF.
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Definition 3.9 (LCT convolution). For two complex functions

f,ge LZ(R), we define the convolution operator of the LCT as
(o) =] fe0gt-xW(x ax (20)

. . i§2x(x—t)
where the weight function W(x, t) = e b :

As an easy consequence of the above definition, we get the following
important result.

Theorem 3.10 (LCAF convolution). Let f, g e LZ(R) be complex
signals. Then we have

AF o4t )

00 _'9 2 _'34 —
=I AF¢ (U, ©) AF4(t —u, o)e B e pl Ll))du. (21)
When A =(a, b, c,d)=(0,1 -1, 0), equation (21) will reduce to
AF P (t, ©) = J'OO AF¢ (U, 0) AF (t - u, ®)du. 22)

Proof. By the LCAF definition (6), we easily obtain

AF gt ©)

e t t il(grz—%mﬂ—%wzj
[T (to g)(r+§j(f o g)(t—Eje 2 de

= Ijow jio f(X)g(t + % - Xjei%ZX(X_(H%Ddx

ST R L

il(irz —gr(m—icozj
2\b b b dt

x e (23)
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ingx=u+P y=u-2L
Puttlngx_u+2,y u 5

AF o gt )

Ao Zfiu- o B
B e
-[ I .[ ( j (t —-u+ gj

.a
P a —|B(4u(t—u)+pq)
X f(u ZJg(t u Z)e

la 2. la 2 . p q, 1d 2
p |— pq | 55 Lo -ito i—o
e 2b e b b2 dpdgdu

© poo g i p2 _iPg i1d,2
=I j f(u+£)f(u—£)e2b b~e2b dp
—0d —0 2 2
la 2 .q

2 2

—0

and T = p + ¢, we immediately get

© N _id i&au(t—
xj g(t—u+ﬂjg(t—u q)erbq Ibwdqelb( ut LI))du

469

(24)
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Applying the definition of the LCAF (6) and multiplying both sides of (24)
iﬂmz
by e 20 yields

.Eg

.A]'—f‘og(t, o) = J._OO’A}—‘A(U' OJ)AféA(t U, o)e 155 . i 4u(t U))dU.

3.3. Practical signal and simulation

In this subsection, we shall discuss an example how to compute the
convolution of the LCAF in (21). We first use a Gaussian function

F(t) = (no?) Vieto/20"
Applying equation (20), we easily obtain

_iﬂwZ ) mz[ZCGZHd]
e

b—2iac?

e
AFRy ¢ (L 0) =

_u .a
x (ncs2 )‘1I ” e o e_(t_”)z/"ze_|5(4u(t_u))du. (25)

If a = 0, then the above identity will reduce to

AFRy ¢ (L, o)

_jld 2 o[ 2¢co? +id u2
~ 27ibi b —o0
IR , m2[2c02+idJ
e 2 2 b 2\-1,-t2/c% [ * —(2u?-2tu)/c?
=" 2mi b (mo”) e I o du.

Using the fact that

0 2 2
J‘ oCt“+2Dt 4 :\/EeD /c’
— C
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where C and D are complex numbers satisfying C # 0 and Re(C) > 0. This

gives
NE P 2[2002+idj
2b b 2,2 2
AFRS (4 o) ZQZWZ% (ro?) et/ \/%e(cht) j2

If a =1 b =1, then equation (25) becomes

AF Ry ¢ (L, ©)

1 24
e_'idmz wZ[ZCG -+|2dj . , . )
-2 - G o \1-2ic (ncz)_lj e~ 2(u”—tu) —id(tu-u) g,
mi(20° +1) —0
_i%dmz mz(zwhizd] ) ,
_ & ; c 1-2ic (mz)—lj' e~ (2-4iut+2(t-i2)uy,,
mi(26° +1) -

e 2

2 ) ] 02
1-2ic 21| (t-i2t)?/2
ni(262 +1) ° (no®) 2-4i° .
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