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Abstract 

The ambiguity function associated with the linear canonical transform 
(LCT) is a generalization of the one-dimensional ambiguity function 
using the linear canonical transform, called the linear canonical 
ambiguity function (LCAF). We first investigate its basic properties 
such as the complex conjugation, translation and modulation. These 
properties are extensions of the corresponding versions of the classical 
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ambiguity function. Using the basic relationship between the LCT and 
LCAF, we derive the inversion and Moyal formulas for the LCAF. 
Based on a convolution theorem for the LCT, we propose the 
convolution theorem related to LCAF. Finally, through simulation 
example, we demonstrate how the proposed convolution generalizes 
the formulation of the classical ambiguity function convolution. 

1. Introduction 

The linear canonical transform (LCT) [4, 6, 7] is a linear integral 
transform with three free parameters which has found many applications in 
several areas, including signal processing and optics. It can be regarded as 
generalization of many transforms such as the Fourier transform, Laplace 
transform, the fractional Fourier transform, the Fresnel transform and the 
other transforms. Many properties of this transform are already known, 
including shift, modulation, and uncertainty principle [9, 11, 14, 16-18]. 

Recently, many efforts have been devoted to extend various types of 
transform to the linear canonical transform. Tao et al. [13] studied the short-
time fractional Fourier transform which are generalization of the short-time 
Fourier transform to the LCT. Some applications of the extended transform 
such as the estimations of the time-of-arrival (TOA), pulse width (PW) of 
chirp signals, and the STFRFD filtering are also discussed. Fan et al. [3] 
proposed an extension of the quaternion Wigner-Ville distribution to the 
LCT. Some useful properties of the generalized transform were also studied. 
In [6], the authors proposed the Wigner-Ville distribution associated LCT 
and established its convolution and correlation theorems. In [19], the authors 
proposed the generalization of the classical wavelet transform to the LCT 
domain and its application to blind image watermarking. The authors [20] 
discussed the convolution and correlation theorems for the 2-D LCT, which 
are the generalization of the convolution and correlation theorem for 2-D 
Fourier transform. In [15], the generalization of the classical ambiguity 
function to the LCT was recently presented. Some general properties of the 
generalized transform were shortly studied. 
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Therefore, the purpose of this present paper is to introduce the linear 
canonical ambiguity function (LCAF). The transform is obtained by 
replacing the Fourier kernel with the LCT kernel in the AF definition. We 
investigate several basic properties of the LCAF such as complex 
conjugation, shift and modulation. These properties are very important for 
their applications in digital signal and image processing. Using the 
relationship between the LCT and LCAF we derive the inversion and Moyal 
formulas related to the LCAF. Based on convolution theorem for the LCT we 
define the convolution of the LCAF and find its convolution theorem. 
Finally, we present an application of the LCAF convolution theorem to 
demonstrate how the proposed convolution generalizes the formulation of the 
ambiguity function convolution theorem. 

2. Preliminaries 

2.1. Linear canonical transform 

The LCT is firstly proposed by Moshinsky and Quesnee [4] and Collins 
[8]. Here we briefly introduce the LCT definition. 

Definition 2.1 (LCT). Let ( ) 22,,, ×∈⎥⎦
⎤

⎢⎣
⎡== R

dc
ba

dcbaA  be a matrix 

parameter such that ( ) .1det =−= bcadA  The LCT of a signal ( )R2Lf ∈  

is defined by 

( ) ( )
( ) ( )

( )⎪
⎪
⎩

⎪⎪
⎨

⎧

=ω

≠ω
=ω

ω⎟
⎠
⎞⎜

⎝
⎛

∞

∞−∫
,0,

,0,,

2
2 bdfed

bdxxKxf
fL cdi

A
A  (1) 

where ( )xK A ,ω  is so-called kernel function of the LCT given by 

( ) .
2
1,

22 2
2
1

⎟
⎠
⎞⎜

⎝
⎛ ω+ω−

π
=ω b

dxbxb
ai

A e
bi

xK  (2) 

It also should be remembered, when ,0=b  the LCT of a signal is essentially 
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a chirp multiplication. Therefore, in this work, we always assume .0≠b  The 
inverse transform of the LCT is given by 

( ) ( ) ( ) ( )∫
∞

∞−
ωωω= − dxKfLxf

AA ,1  

( ) ( )∫
∞

∞−

⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛−ω⎟

⎠
⎞⎜

⎝
⎛+ω⎟

⎠
⎞⎜

⎝
⎛ −

ωω
π−

= ,
2
1

22 2
2
1

defL
bi

xb
axbb

di
A  (3) 

where the inverse of matrix parameter A is denoted by 1−A  and =−1A  
( ).,,, acbd −−  

An important property of the LCT is the Parseval’s formula which will 
be used to establish Moyal’s formula for the linear canonical ambiguity 
function (LCAF) 

( ) ( ) ( )( ),,, gLfLgf AA=  (4) 

for all ( )., 2 RLgf ∈  In particular, for gf =  we obtain the Plancherel’s 

formula for the LCT as 

( ) ,22 fLf A=  

where pL  norm is defined by 

( ) .1,
1

∞<≤⎟
⎠
⎞

⎜
⎝
⎛= ∫

∞

∞−
pdxxff

p
p

p  

2.2. Ambiguity function 

In this subsection, we briefly discuss the important properties of the 
ambiguity function. For more details, we refer the reader to [1, 2, 10, 11]. 

Definition 2.2 (Ambiguity function). If two functions ( ),, 2 RLgf ∈  

the cross ambiguity function of f and g is defined by 

( ) ∫
∞

∞−
ω−⎟

⎠
⎞⎜

⎝
⎛ −⎟

⎠
⎞⎜

⎝
⎛ +=ω .22,, dxetxgtxftA xi

gf  (5) 
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Some basic properties of the classical AF are summarized as follows. Let 

( )., 2 RLgf ∈  Denote by aτ  is the shift operator defined by ( ) =τ xfk  

( )kxf −  and by 0ωM  is a modulation operator defined ( ) =ω xf0M  

( ).0 xfe xiω  

1. Complex conjugation 

( ) ( ).,, ,, ω−−=ω tWtA fggf  

2. Translation 

( ) ( ).,, ,, 0 ω=ω ω−
ττ tAetA gf

ki
gf kk  

3. Modulation 

( ) ( ).,, 0,, 0
00

ω−ω=ω ω−
ωω

tAetA gf
ki

gf MM  

4. Moyal’s formula 

( ) ( ) ( ) ( )∫ ∫
∞

∞−

∞

∞−
=ωωω

π
.,,,,2

1
2121,, 2211 ggffdtdtAtA gfgf  

5. Inversion formula 

( )
( ) ∫

∞

∞−
ω ω⎟

⎠
⎞⎜

⎝
⎛ ω

π
= ,,202

1
, detA

g
tf ti

gf  

provided ( ) .00 ≠g  

3. Linear Canonical Ambiguity Function (LCAF) 

3.1. Definition of LCAF 

Based on the definition of the classical ambiguity function associated 
with the Fourier transform, we obtain a definition of the linear canonical 
ambiguity function (LCAF) by replacing the kernel of the FT with the kernel 
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of the LCT in the classical AF definition. This definition is similar to the       
one proposed in [15]. Therefore, in this paper, we shall investigate more 
properties of the LCAF. 

Definition 3.1. If ( ),, 2 RLgf ∈  then the cross linear canonical 

ambiguity function (LCAF) of two functions f and g is defined as 

( ) ∫
∞

∞−

⎟
⎠
⎞⎜

⎝
⎛ ω+ω−

π
⎟
⎠
⎞⎜

⎝
⎛ −⎟

⎠
⎞⎜

⎝
⎛ +=ω .

2
1

22,
22 2

2
1

, dxe
bi

txgtxft b
dxbxb

aiA
gfAF  (6) 

Suppose the kernel of the LCT with parameter A is ( )xK A ,ω  defined in (2). 

Then (5) takes the form 

( ) ( ) ( )∫
∞

∞−
ω=ω ,,,, ,, dxxKtxht Agf

A
gfAF  (7) 

where 

( ) .22,, ⎟
⎠
⎞⎜

⎝
⎛ −⎟

⎠
⎞⎜

⎝
⎛ += txgtxftxh gf  (8) 

If ,gf =  then ( ) ( )ω=ω ,,, tt A
f

A
ff AFAF  is called the auto linear 

canonical ambiguity function. Often both the cross LCAF and the auto LCAF 
are usually referred to simply as the LCAF. 

It follows from Definition 3.1 that the cross LCAF is the LCT of the 
function ( )txh gf ,,  with respect to x. In other words, 

( ) { ( )}( ).,, ,, ω=ω txhLt gfA
A

gfAF  

The following result describes an inequality related to the LCAF. 

Theorem 3.2. Suppose that ( ) ( )RR qp LgLf ∈∈ ,  with .111 =+ qp  

Then we have 

( ) .
2
1,, qp

A
gf gf

b
t

π
≤ωAF  (9) 
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Proof. A straightforward computation shows that 

( )ω,, tA
gfAF  

∫
∞

∞−

⎟
⎠
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Hence, the result follows. 

Observe first that for ,2== qp  equation (9) will reduce to 

( ) ,
2
1, 22, gf

b
tA

gf π
≤ωAF  

which shows that ( )ω,, tA
gfAF  is bounded on ( ).2 RL  

Example 1. Find the LCAF of a Gaussian signal 

( ) ( ) .
22 2412 σ−−πσ= tetf  

Applying the definition of the LCAF (5) gives 
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( ) ( )
bi

tA
f π

πσ=ω −

2
1, 212AF  

∫
∞

∞−

⎟
⎠
⎞⎜

⎝
⎛ ω+ω−σ⎟

⎠
⎞⎜

⎝
⎛ −−σ⎟

⎠
⎞⎜

⎝
⎛ +−

× dxeee b
dxbxb

aitxtx 222222 2
2
12222  

( ) ∫
∞

∞−

⎟
⎠
⎞⎜

⎝
⎛ ω+ω−σ−σ−−

π
πσ= .

2
1

22
2222

2
2
1

4212 dxeee
bi

b
dxbxb

aixt  

Applying the LCT of the Gaussian function, which can be found in [5], we 
finally arrive at 

( ) ( ) .
2

2
2
1,

2

22

22 2
2

2

2
4212 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

σ−

+σω

σ−−

+σ

σ
π

πσ=ω iab
idc

tA
f e

bia
e

bi
tAF  

3.2. Useful properties of LCAF 

In this subsection, we discus some useful properties of the LCAF and 
theirs proofs. We see that the most of them are extensions of the 
corresponding version of the classical ambiguity function (AF) with the some 
modifications. 

Theorem 3.3 (Complex conjugation). For any function ( ),, 2 RLgf ∈  

we have 

( ) ( ).,,
1

,, ω−=ω
−

tt A
fg

A
gf AFAF  (10) 

Proof. Applying the definition of the LCAF (6) and inverse of the matrix 
parameter ( ),,,, dcbaA =  we easily obtain 

( ) ∫
∞

∞−

⎟
⎠
⎞⎜

⎝
⎛ ω+ω−

π
⎟
⎠
⎞⎜

⎝
⎛ −⎟

⎠
⎞⎜

⎝
⎛ +=ω dxe

bi
txgtxft b

dxbxb
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22 2
2
1

, 2
1
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∫
∞
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⎟
⎠
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⎝
⎛ ω+ω−−

⎟
⎠
⎞⎜

⎝
⎛ +⎟

⎠
⎞⎜

⎝
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π−
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b
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ai 22 2
2
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1  
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( )∫
∞

∞−
ω⎟

⎠
⎞⎜

⎝
⎛ +⎟

⎠
⎞⎜

⎝
⎛ −= − dxxKtxftxg

A
,22 1  

( ).,
1

, ω−=
−

tA
fgAF  

Theorem 3.4 (Translation). Suppose that ( )., 2 RLgf ∈  Then we have 

( ) ( ).,, ,2
,

2

kateet A
gf

ackiickA
gf kk

−ω=ω
−ω

ττ AFAF  (11) 

Proof. It follows from the definition of the LCAF (6) that 

( ) .22,
22 2

2
1

, ∫
∞

∞−

⎟
⎠
⎞⎜

⎝
⎛ ω+ω−

ττ ⎟
⎠
⎞⎜

⎝
⎛ −−⎟

⎠
⎞⎜

⎝
⎛ +−=ω dxetkxgtkxft b

dxbxb
aiA

gf kk
AF  

Letting ykx =−  and then applying shift property of the LCT, we 

immediately obtain 

 ( )ωττ ,, tA
gf kk

AF  

( ) ( )

∫
∞

∞−

⎟
⎠
⎞⎜

⎝
⎛ ω+ω+−+

⎟
⎠
⎞⎜

⎝
⎛ −⎟

⎠
⎞⎜

⎝
⎛ += dyetygtyf b

dkybkyb
ai 22 2

2
1

22  

( ),,,2

2

katee A
gf

ackiick −ω=
−ω AF  

which was to be proved. 

Theorem 3.5 (Modulation). For any function ( ),, 2 RLgf ∈  we have 

( ) ( ).,, ,,
0

00
ω=ω ω

ωω
tet A

gf
tiA

gf AFAF MM  (12) 

Proof. Simple calculations show that 

( )ω
ωω

,
00 , tA

gf MMAF  

( )∫
∞

∞−

⎟
⎠
⎞⎜

⎝
⎛ −ω−⎟

⎠
⎞⎜

⎝
⎛ +ω

ω⎟
⎠
⎞⎜

⎝
⎛ −⎟

⎠
⎞⎜

⎝
⎛ += dxxKtxgetxfe A

txitxi
,22

22 00
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∫
∞

∞−

⎟
⎠
⎞⎜

⎝
⎛ ω+ω−ω ⎟

⎠
⎞⎜

⎝
⎛ −⎟

⎠
⎞⎜

⎝
⎛ +

π
= dxetxgtxfe

bi
b
dxbxb

aiti
22

0
2

2
1

222
1  

( ).,,0 ω= ω te A
gf

ti AF  

Theorem 3.6 (Modulation and translation). Let ( )R2, Lgf ∈  be two 

complex functions. Then we get 

( ) ( ),,, ,,
0

00
katet A

gf
tiA

gf kk
−ω=ω ω

ττ ωω
AFAF MM  (13) 

( )
( ) ( ) 0022

0
2

00

0
2
1

2
1

, ,
ω−ωω++ω+−

ω

ωω
ττ =ω

ibckdckibdacki

kk

eitiA
gf eetMAF  

( ),, 0, baktA
gf ω−−ω× AF  (14) 

( )
( ) ( ) 0022

0
2

00

0
2
1

2
1

, ,
ω−ωω++ω+−

ω

ωω
ττ =ω

ibckdckibdacki

kk

eitiA
gf eetMAF  

( )., 0, baktA
gf ω+−ω× AF  (15) 

Proof. For (13), an easy computation yields 

 ( )ωττ ωω
,

00 , tA
gf kk MMAF  

( )∫
∞

∞−

⎟
⎠
⎞⎜

⎝
⎛ −ω−⎟

⎠
⎞⎜

⎝
⎛ +ω

ω⎟
⎠
⎞⎜

⎝
⎛ −−⎟

⎠
⎞⎜

⎝
⎛ −+= dxxKktxgektxfe A

txitxi
,22

22 00
 

∫
∞

∞−

⎟
⎠
⎞⎜

⎝
⎛ ω+ω−ω ⎟

⎠
⎞⎜

⎝
⎛ −−⎟

⎠
⎞⎜

⎝
⎛ −+

π
= dxektxgktxfe

bi
b
dxbxb

aiti
22

0
2

2
1

222
1  

( ),,,2

2

0 kateee A
gf

ackiickti −ω=
−ωω AF  

where the last line of above expression follows from translation property of 
the LCT. For (14), we have, by definition 
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( )ωττω
,,0

tA
gf kkMAF  

( )∫
∞

∞−

⎟
⎠
⎞⎜

⎝
⎛ +ω

ω⎟
⎠
⎞⎜

⎝
⎛ −−⎟

⎠
⎞⎜

⎝
⎛ +−= dxxKtkxgtkxfe A

txi
,22

20
 

∫
∞

∞−

⎟
⎠
⎞⎜

⎝
⎛ ω+ω−ωω ⎟

⎠
⎞⎜

⎝
⎛ −−⎟

⎠
⎞⎜

⎝
⎛ +−

π
= dxetkxgtkxfee

bi
b
dxbxb

aitixi
22

00
2

2
1

2
1

222
1  

( )

∫
∞

∞−

⎟
⎠
⎞⎜

⎝
⎛ ω+ω−ω−ω

⎟
⎠
⎞⎜

⎝
⎛ −−⎟

⎠
⎞⎜

⎝
⎛ +−

π
= dxetkxgtkxfe

bi
b
dxbbxb

aiti
2

0
2

0
2

2
1

2
1

222
1  

( ) ( ) ( )., 0,
22

1
00

2
0

20 ω−−ω= ω−ωω++ω+−ω
baktee A

gf
ibckdckibdackiti

AF  

For (15), an application of modulation and translation properties of the LCT 
we easily obtain 

 ( )ωττ ω
,

0, tA
gf kk MAF  

( )∫
∞

∞−

⎟
⎠
⎞⎜

⎝
⎛ −ω−

ω⎟
⎠
⎞⎜

⎝
⎛ −−⎟

⎠
⎞⎜

⎝
⎛ −+= dxxKktxgektxf A

txi
,22

20
 

( ) ( ) ( )., 0,
22

1
00

2
0

20 ω+−ω= ω−ωω++ω+−ω
baktee A

gf
ibckdckibdackiti

AF  

Theorem 3.7 (Reconstruction formula). For any function ( ),, 2 RLgf ∈  

we have 

( )
( )

( )∫
∞

∞−
ωω⎟

⎠
⎞⎜

⎝
⎛ ω= − .,,20

1
1, dtKt

g
tf

A
A

gfAF  (16) 

Proof. It directly follows from (7) that 

( ) { ( )}( ) ( ) ( )∫
∞

∞−
ω=ω=ω .,,,, ,,, dxxKtxhtxhLt AgfgfA

A
gfAF  
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Applying the inverse of the LCT (3), we get 

( ) ( ) ( )∫
∞

∞−
ωωω= − ,,,, 1,, dxKttxh

A
A

gfgf AF  

and thus 

( ) ( )∫
∞

∞−
ωωω=⎟

⎠
⎞⎜

⎝
⎛ −⎟

⎠
⎞⎜

⎝
⎛ + − .,,22 1, dxKttxgtxf

A
A

gfAF  

Taking the specific value, 2
tx =  and the above yields 

( ) ( ) ( )∫
∞

∞−
ω⎟

⎠
⎞⎜

⎝
⎛ ωω= − ,,2,0 1, dtKtgtf

A
A

gfAF  

or equivalently, 

( )
( )

( )∫
∞

∞−
ω⎟

⎠
⎞⎜

⎝
⎛ ωω= − .,2,

0
1

1, dtKt
g

tf
A

A
gfAF  

Theorem 3.8 (Moyal’s formula). For complex functions 

( ),,,, 2
2121 RLggff ∈  then the following result holds: 

( ) ( ) ( ) ( )∫ ∫
∞

∞−

∞

∞−
=ωωω .,,2,, 2121,, 2211

ggffdtdtt A
gf

A
gf AFAF  (17) 

In particular, we have 

( )∫ ∫
∞

∞−

∞

∞−
=ωω 22

2
, 2, gfdtdtA
gfAF  (18) 

and 

( ) ( ) ( )∫ ∫
∞

∞−

∞

∞−
=ωωω .,2,, 2gfdtdtt A

g
A
f AFAF  (19) 

Proof. Applying Parseval’s formula of the LCT (4) to ω -integral into 
the left-hand side of (17) yields 
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( ) ( )∫ ∫
∞

∞−

∞

∞−
ωωω dtdtt A

gf
A

gf ,,
2211 ,, AFAF  

{ ( )}( ) { ( )}( )∫ ∫
∞

∞−

∞

∞−
⎟
⎠
⎞

⎜
⎝
⎛ ωωω= dtdtxhLtxhL gfAgfA ,, 2211 ,,  

( ) ( )∫ ∫
∞

∞−

∞

∞−
⎟
⎠
⎞

⎜
⎝
⎛= .,, 2211 ,, dtdxtxhtxh gfgf  

Therefore, we further get 

( ) ( )∫ ∫
∞

∞−

∞

∞−
ωωω dtdtt A

gf
A

gf ,,
2211 ,, AFAF  

∫ ∫
∞

∞−

∞

∞−
⎟
⎠
⎞⎜

⎝
⎛ +⎟

⎠
⎞⎜

⎝
⎛ −⎟

⎠
⎞⎜

⎝
⎛ −⎟

⎠
⎞⎜

⎝
⎛ += .2222 2211 dtdxtxftxgtxgtxf  

Making the change of variables 2
txy +=  and 2

txz −=  and applying 

Fubini’s theorem, we obtain 

( ) ( )∫ ∫
∞

∞−

∞

∞−
ωωω dtdtt A

gf
A

gf ,,
2211 ,, AFAF  

( ) ( ) ( ) ( )∫ ∫
∞

∞−

∞

∞−
= dydzyfzgzgyf 22112  

( ) ( ) ( ) ( )∫ ∫
∞

∞−

∞

∞−
= dzzgzgdyyfyf 21212  

( ) ( ).,,2 2121 ggff=  

The convolution is a fundamental signal processing algorithm in the theory 
of linear time-invariant (LTI) systems. In engineering, it has been widely 
used for various template matching. In the following, we first define the 
convolution for the LCT (see, for example, [16, 17]. It is the extension of the 
convolution definitions from the FT domain to the LCT domain. We present 
the convolution definition associated with LCAF and then establish 
convolution theorem related to the LCAF. 
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Definition 3.9 (LCT convolution). For two complex functions 

( ),, 2 RLgf ∈  we define the convolution operator of the LCT as 

( ) ( ) ( ) ( ) ( )∫
∞

∞−
−=◊ ,, dxtxWxtgxftgf  (20) 

where the weight function ( )
( )

.,
2 txxb

ai
etxW

−
=  

As an easy consequence of the above definition, we get the following 
important result. 

Theorem 3.10 (LCAF convolution). Let ( )R2, Lgf ∈  be complex 

signals. Then we have 

 ( )ω◊ ,tA
gfAF  

( ) ( )
( )( )

∫
∞

∞−

−−ω−
ω−ω= .,,

42
dueeutu

utub
aib

di
gf AFAF  (21) 

When ( ) ( ),0,1,1,0,,, −== dcbaA  equation (21) will reduce to 

( ) ( ) ( )∫
∞

∞−
◊ ω−ω=ω .,,, duutut gf

A
gf AFAFAF  (22) 

Proof. By the LCAF definition (6), we easily obtain 

  ( )ω◊ ,tA
gfAF  

( ) ( )∫
∞

∞−

⎟
⎠
⎞⎜

⎝
⎛ ω+τω−τ

τ⎟
⎠
⎞⎜

⎝
⎛ −τ◊⎟

⎠
⎞⎜

⎝
⎛ +τ◊= detgftgf b

d
bb

ai 22 2
2
1

22  

( )∫ ∫
∞

∞−

∞

∞−

⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ +τ−

⎟
⎠
⎞⎜

⎝
⎛ −+τ= dxextgxf

txxb
ai 22

2  

( )∫
∞

∞−

⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ −τ−

⎟
⎠
⎞⎜

⎝
⎛ −−τ× dyeytgyf

tyyb
ai 22

2  

.
22 2

2
1

τ×
⎟
⎠
⎞⎜

⎝
⎛ ω+τω−τ

de b
d

bb
ai

 (23) 



Some Useful Properties of Ambiguity Function … 469 

Putting 2,2
puypux −=+=  and ,qp +=τ  we immediately get 

( )ω◊ ,tA
gfAF  

∫ ∫ ∫
∞

∞−

∞

∞−

∞

∞−

⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ +−τ+⎟

⎠
⎞⎜

⎝
⎛ +−

⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ +−τ+⎟

⎠
⎞⎜

⎝
⎛ += 2222

222

putpub
ai

eputgpuf  

⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ −−τ−⎟

⎠
⎞⎜

⎝
⎛ −× 222

putgpuf  

dpdqduee b
d

bb
aiputpub

ai ⎟
⎠
⎞⎜

⎝
⎛ ω+τω−τ⎟

⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ −−τ−⎟

⎠
⎞⎜

⎝
⎛ −−

×
22 2

2
1

2222
 

∫ ∫ ∫
∞

∞−

∞

∞−

∞

∞−
⎟
⎠
⎞⎜

⎝
⎛ +−⎟

⎠
⎞⎜

⎝
⎛ += 22

qutgpuf  

⎟
⎠
⎞⎜

⎝
⎛ +−⎟

⎠
⎞⎜

⎝
⎛ +−

⎟
⎠
⎞⎜

⎝
⎛ −−⎟

⎠
⎞⎜

⎝
⎛ −× 222

22

qutpub
ai

equtgpuf  

( ) ( )
dpdqduee b

dqpbqpb
aiqutpub

ai ⎟
⎠
⎞⎜

⎝
⎛ ω+ω+−+⎟

⎠
⎞⎜

⎝
⎛ −−⎟
⎠
⎞⎜

⎝
⎛ −−

×
22 2

2
1

222
 

∫ ∫ ∫
∞

∞−

∞

∞−

∞

∞−
⎟
⎠
⎞⎜

⎝
⎛ +−⎟

⎠
⎞⎜

⎝
⎛ += 22

qutgpuf  

( )( )pqutub
ai

equtgpuf
+−−

⎟
⎠
⎞⎜

⎝
⎛ −−⎟

⎠
⎞⎜

⎝
⎛ −×

4

22  

dpdqdueeeeee b
dib

qib
piqb

aipqipb
ai 222

2
1

2
122

1
2
1 ωω−ω−

×  

∫ ∫
∞

∞−

∞

∞−

ωω−
⎟
⎠
⎞⎜

⎝
⎛ −⎟

⎠
⎞⎜

⎝
⎛ += dpeeepufpuf b

dib
pipb

ai 22
2
1

2
1

22  

( )( )
∫
∞

∞−

−ω−
×⎟

⎠
⎞⎜

⎝
⎛ −−⎟

⎠
⎞⎜

⎝
⎛ +−× .22

42
1 2

dudqeeequtgqutg
utub

aib
qiqb

ai
 (24) 
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Applying the definition of the LCAF (6) and multiplying both sides of (24) 

by 
2

2
1 ωb
di

e  yields 

( ) ( ) ( )
( )( )

∫
∞

∞−

−−ω−
◊ ω−ω=ω .,,,

42
1 2

dueeutut
utub

aib
diA

g
A
f

A
gf AFAFAF  

3.3. Practical signal and simulation 

In this subsection, we shall discuss an example how to compute the 
convolution of the LCAF in (21). We first use a Gaussian function 

( ) ( ) .
22 2412 σ−−πσ= tetf  

Applying equation (20), we easily obtain 

( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

σ−

+σωω−

◊
+σ

σ
π

=ω
2

2
22

2
2

2

22
1

2
2

2, iab
idc

b
di

A
ff e

babi
etAF  

( ) ( ) ( )( )
∫
∞

∞−

−−σ−−σ
−

−πσ× .
412 222

2

dueee
utub

aiut
u

 (25) 

If ,0=a  then the above identity will reduce to 

( )ω◊ ,tA
ffAF  

( ) ( )∫
∞

∞−
σ−−σ

−
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +σωω−

πσσ
π

= dueeebbi
e ut

u
b

idc
b
di

222

22
22

12
2

22
1

2
2  

( ) ( )∫
∞

∞−
σ−−σ−−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +σωω−

πσσ
π

= .2
2

2222

2
22

2212
2

22
1

dueeebbi
e tuutb

idc
b
di

 

Using the fact that 

∫
∞

∞−
± π= ,

22 2 CDDtCt eCdte  
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where C and D are complex numbers satisfying 0≠C  and ( ) .0Re ≥C  This 

gives 

( ) ( ) ( ) .2
2

2, 2212
2

22
1

222

2
22

ttb
idc

b
di

A
ff eeebbi

et σσ−−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +σωω−

◊
πσπσσ

π
=ωAF  

If ,1,1 == ba  then equation (25) becomes 

( )ω◊ ,tA
ffAF  

( )
( ) ( ) ( )∫

∞

∞−
−−−−−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

σ−

+σωω−

πσ
+σπ

σ= dueee
i

e utuituui
idcdi

222

2
22

421221
2

2

22
1

12
 

( )
( ) ( ) ( )∫

∞

∞−
−+−−−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

σ−

+σωω−

πσ
+σπ

σ= duee
i

e utituii
idcdi

22421221
2

2

22
1

22

2
22

12
 

( )
( ) ( ) .4212

221221
2

2

22
1

22

2
22

titi
idcdi

eie
i

e −−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

σ−

+σωω−

−
ππσ

+σπ

σ=  
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